Что такое закон всемирного тяготения: формула великого открытия. Сила тяжести и сила всемирного тяготения Сила всемирного тяготения между землей и солнцем

Падение тел на Землю в пустоте называется свободным падением тел. При падении в стеклянной трубке, из которой с помощью насоса откачан воздух, кусок свинца, пробка и легкое перо достигают дна одновременно (рис. 26). Следовательно, при свободном падении все тела независимо от их массы движутся одинаково.

Свободное падение является равноускоренным движением.

Ускорение, с которым падают на Землю тела в пустоте, называется ускорением свободного падения. Ускорение свободного падения обозначается буквой g. У поверхности земного шара модуль ускорения свободного падения примерно равен

Если в расчетах не требуется высокая точность, то принимают, что модуль ускорения свободного падения у поверхности Земли равен

Одинаковое значение ускорения свободно падающих тел, имеющих разную массу, свидетельствует о том, что сила, под действием которой тело приобретает ускорение свободного падения, пропорциональна массе тела. Эта сила притяжения, действующая со стороны Земли на все тела, называется силой тяжести:

Сила тяжести действует на любое тело у поверхности Земли и на расстоянии от поверхности, и на расстоянии 10 км, где летают самолеты. А действует ли сила тяжести на еще больших расстояниях от Земли? Зависят ли сила тяжести и ускорение свободного падения от расстояния до Земли? Над этими вопросами думали многие ученые, но впервые ответы на них дал в XVII в. великий английский физик Исаак Ньютон (1643- 1727).

Зависимость силы тяжести от расстояния.

Ньютон предположил, что сила тяжести действует на любом расстоянии от Земли, но ее значение убывает обратно пропорционально квадрату расстояния от центра Земли. Проверкой этого предположения могло быть измерение силы притяжения какого-то тела, находящегося на большом расстоянии от Земли, и сравнение ее с силой притяжения того же тела у поверхности Земли.

Для определения ускорения движения тела под действием силы тяжести на большом расстоянии от Земли Ньютон воспользовался результатами астрономических наблюдений за движением Луны.

Он предположил, что сила притяжения, действующая со стороны Земли на Луну, есть та же самая сила тяжести, которая действует на любые тела у поверхности Земли. Следовательно, центростремительное ускорение при движении Луны по орбите вокруг Земли представляет собой ускорение свободного падения Луны на Землю.

Расстояние от центра Земли до центра Луны равно км. Это примерно в 60 раз больше расстояния от центра Земли до ее поверхности.

Если сила тяжести убывает обратно пропорционально квадрату расстояния от центра Земли, то ускорение свободного падения на орбите Луны должно быть в раза меньше ускорения свободного падения у поверхности Земли

По известным значениям радиуса орбиты Луны и периода ее обращения вокруг Земли Ньютон вычислил центростремительное ускорение Луны. Оно оказалось действительно равным

Теоретически предсказанное значение ускорения свободного падения совпало со значением, полученным в результате астрономических наблюдений. Это доказывало справедливость предположения Ньютона о том, что сила тяжести убывает обратно пропорционально квадрату расстояния от центра Земли:

Закон всемирного тяготения.

Подобно тому как Луна движется вокруг Земли, Земля в свою очередь обращается вокруг Солнца. Вокруг Солнца обращаются Меркурий, Венера, Марс, Юпитер и другие планеты

Солнечной системы. Ньютон доказал, что движение планет вокруг Солнца происходит под действием силы притяжения, направленной к Солнцу и убывающей обратно пропорционально квадрату расстояния от него. Земля притягивает Луну, а Солнце - Землю, Солнце притягивает Юпитер, а Юпитер - свои спутники и т. д. Отсюда Ньютон сделал вывод, что все тела во Вселенной взаимно притягивают друг друга.

Силу взаимного притяжения, действующую между Солнцем, планетами, кометами, звездами и другими телами во Вселенной, Ньютон назвал силой всемирного тяготения.

Сила всемирного тяготения, действующая на Луну со стороны Земли, пропорциональна массе Луны (см. формулу 9.1). Очевидно, что снла всемирного тяготения, действующая со стороны Луны на Землю, пропорциональна массе Земли. Эти силы по третьему закону Ньютона равны между собой. Следовательно, сила всемирного тяготения, действующая между Луной и Землей, пропорциональна массе Земли и массе Луны, т. е. пропорциональна произведению их масс.

Распространив установленные закономерности - зависимость силы тяжести от расстояния и от масс взаимодействующих тел - на взаимодействие всех тел во Вселенной, Ньютон открыл в 1682 г. закон всемирного тяготения: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела.

Закон всемирного тяготения в такой форме может быть использован для вычисления сил взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними. Ньютон доказал, что для однородных шарообразных тел закон всемирного тяготения в данной форме применим при любых расстояниях между телами. За расстояние между телами в этом случае принимается расстояние между центрами шаров.

Силы всемирного тяготения называют гравитационными силами, а коэффициент пропорциональности в законе всемирного тяготения называют гравитационной постоянной.

Гравитационная постоянная.

Если существует сила притяжения между земным шаром и куском мела, то, вероятно, существует сила притяжения и между половиной земного шара и куском мела. Продолжая мысленно такой процесс деления земного шара, мы придем к выводу, что гравитационные силы должны действовать между любыми телами, начиная от звезд и планет и кончая молекулами, атомами и элементарными частицами. Это предположение было доказано экспериментально английским физиком Генри Кавендишем (1731-1810) в 1788 г.

Кавендиш выполнил опыты по обнаружению гравитационного взаимодействия тел небольших

размеров с помощью крутильных весов. Два одинаковых небольших свинцовых шара диаметром примерно 5 см были укреплены на стержне длиной около подвешенном на тонкой медной проволоке. Против малых шаров он устанавливал большие свинцовые шары диаметром 20 см каждый (рис. 27). Опыты показали, что при этом стержень с малыми шарами поворачивался, что говорит о наличии силы притяжения между свинцовыми шарами.

Повороту стержня препятствует сила упругости, возникающая при закручивании подвеса.

Эта сила пропорциональна углу поворота. Силу гравитационного взаимодействия шаров можно определить по углу поворота подвеса.

Массы шаров расстояние между ними в опыте Кавендиша были известны, сила гравитационного взаимодействия измерялась непосредственно; поэтому опыт позволил определить гравитационную постоянную в законе всемирного тяготения. По современным данным она равна

Простейшие арифметические расчёты убедительно показывают, что сила притяжения Луны к Солнцу в 2 раза больше, чем Луны к Земле.
Это означает, что, согласно «Закону Всемирного Тяготения», Луна обязана вращаться вокруг Солнца...
Закон Всемирного Тяготения- это даже не научная фантастика, а просто бред , больший, чем теория о том, что земля покоится на черепахах, слонах и китах...

Обратимся к другой проблеме научного знания: а всегда ли есть возможность установить истину в принципе - хоть когда-либо вообще. Нет, не всегда. Приведём пример на основе все того же «всемирного тяготения». Как известно, скорость света конечна, в результате, удалённые объекты мы видим не там, где они расположены в данный момент, а видим их в той точке, откуда стартовал увиденный нами луч света. Многих звёзд, возможно, вообще нет, идёт только их свет - избитая тема. А вот тяготение - оно с какой скоростью распространяется? Ещё Лапласу удалось установить, что тяготение от Солнца исходит не оттуда, где мы его видим, а из другой точки. Проанализировав данные, накопленные к тому времени, Лаплас установил, что «гравитация » распространяется быстрее света, как минимум, на семь порядков ! Современные измерения отодвинули скорость распространения гравитации ещё дальше - как минимум, на 11 порядков быстрей скорости света .

Есть большие подозрения, что «гравитация» распространяется вообще мгновенно. Но если это на самом деле имеет место быть, то как это установить - ведь любые измерения теоретически невозможны без какой-либо погрешности. Так что мы никогда не узнаем - конечна ли эта скорость или бесконечна. А мир, в котором она имеет предел, и мир в котором она беспредельна - это «две большие разницы», и мы никогда не будем знать, в каком же мы мире живём! Вот он предел, который положен научному знанию. Принять ту или иную точку зрения - это дело веры , совершенно иррациональной, не поддающейся никакой логике. Как не поддаётся никакой логике вера в «научную картину мира», которая базируется на «законе всемирного тяготения», который существует лишь в зомбированных головах, и который никак не обнаруживается в окружающем мире...

Сейчас оставим ньютоновский закон, а в заключение приведём нагляднейший пример того, что законы, открытые на Земле, вовсе не универсальны для остальной Вселенной .

Взглянем на ту же Луну. Желательно в полнолуние. Почему Луна выглядит как диск - скорее блин, чем колобок, форму которого она имеет? Ведь она - шар, а шар, если освещён со стороны фотографа, выглядит примерно так: в центре - блик, далее освещённость падает, к краям диска изображение темнее.

У луны же на небе освещённость равномерная - что в центре, что по краям, достаточно взглянуть на небо. Можно воспользоваться хорошим биноклем или фотоаппаратом с сильным оптическим «зумом», пример такой фотографии приведён в начале статьи. Снято было с 16-кратным приближением. Это изображение можно обработать в любом графическом редакторе , усилив контрастность, чтоб убедиться - всё так и есть, более того, яркость по краям диска вверху и внизу даже чуть выше, чем в центре, где она по теории должна быть максимальной.

Здесь мы имеем пример того, что законы оптики на Луне и на Земле совершенно разные ! Луна почему-то весь падающий свет отражает в сторону Земли. У нас нет никаких оснований распространять закономерности, выявленные в условиях Земли, на всю Вселенную. Не факт, что физические «константы» являются константами на самом деле и не изменяются со временем.

Всё вышесказанное показывает, что «теории» «чёрных дыр», «бозоны хиггса» и многое прочее - это даже не научная фантастика, а просто бред , больший, чем теория о том, что земля покоится на черепахах, слонах и китах...

Природоведение: Закон всемирного тяготения

Да, и еще... давай Дружжить, и ? ---жми смелее сюда -->> Добавить в друзья на ЖЖ
А еще давай дружить на

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.


В этом параграфе мы расскажем об удивительной догадке Ньютона, приведшей к открытию закона всемирного тяготения.
Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со стороны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, на-правленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.
Догадка Ньютона
Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»: «Брошенный горизонтально камень отклонится
, \\
1
/ /
У
Рис. 3.2
под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, ! то он упадет дальше» (рис. 3.2). Про- J должая эти рассуждения, Ньютон \ приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».
Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.
Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца - это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?
Зависимость силы тяготения от массы тел
В § 1.23 говорилось о свободном падении тел. Упоминались опыты Галилея, доказавшие, что Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. Именно в этом случае ускорение свободного падения, равное отношению силы земного притяжения к массе тела, является постоянной величиной.
Действительно, в этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а уско-
F
рение, которое равно отношению - , останется неизменным.
Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует. Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела.
Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:
F - тут2. (3.2.1)
От чего еще зависит сила тяготения, действующая на данное тело со стороны другого тела?
Зависимость силы тяготения от расстояния между телами
Можно предположить, что сила тяготения должна зависеть от расстояния между телами. Чтобы проверить правильность этого предположения и найти зависимость силы тяготения от расстояния между телами, Ньютон обратился к движению спутника Земли - Луны. Ее движение было в те времена изучено гораздо точнее, чем движение планет.
Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле
л 2
а = - Тг
где В - радиус лунной орбиты, равный примерно 60 радиусам Земли, Т = 27 сут 7 ч 43 мин = 2,4 106 с - период обращения Луны вокруг Земли. Учитывая, что радиус Земли R3 = 6,4 106 м, получим, что центростремительное ускорение Луны равно:
2 6 4к 60 ¦ 6,4 ¦ 10
М „ „„„. , о
а = 2 ~ 0,0027 м/с*.
(2,4 ¦ 106 с)
Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с2) приблизительно в 3600 = 602 раз.
Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 602 раз.
Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли:
ci
а = -к, (3.2.2)
R
где Сj - постоянный коэффициент, одинаковый для всех тел.
Законы Кеплера
Исследование движения планет показало, что это движение вызвано силой притяжения к Солнцу. Используя тщательные многолетние наблюдения датского астронома Тихо Браге, не-мецкий ученый Иоганн Кеплер в начале XVII в. установил ки-нематические законы движения планет - так называемые законы Кеплера.
Первый закон Кеплера
Все планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.
Эллипсом (рис. 3.3) называется плоская замкнутая кривая, сумма расстояний от любой точки которой до двух фиксированных точек, называемых фокусами, постоянна. Эта сумма расстояний равна длине большой оси АВ эллипса, т. е.
FгР + F2P = 2b,
где Fl и F2 - фокусы эллипса, a b = ^^ - его большая полуось; О - центр эллипса. Ближайшая к Солнцу точка орбиты называется перигелием, а самая далекая от него точка - р

В
Рис. 3.4
«2
В А А афелием. Если Солнце находится в фокусе Fr (см. рис. 3.3), то точка А - перигелий, а точка В - афелий.
Второй закон Кеплера
Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади. Так, если заштрихованные секторы (рис. 3.4) имеют одинаковые площади, то пути si> s2> s3 будут пройдены планетой за равные промежутки времени. Из рисунка видно, что Sj > s2. Следовательно, линейная скорость движения планеты в различных точках ее орбиты неодинакова. В перигелии скорость планеты наибольшая, в афе-лии - наименьшая.
Третий закон Кеплера
Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. Обозначив большую полуось орбиты и период обращения одной из планет через Ьх и Tv а другой - через Ь2 и Т2, третий закон Кеплера можно записать так:

Из этой формулы видно, что чем дальше планета от Солнца, тем больше ее период обращения вокруг Солнца.
На основании законов Кеплера можно сделать определенные выводы об ускорениях, сообщаемых планетам Солнцем. Мы для простоты будем считать орбиты не эллиптическими, а круговыми. Для планет Солнечной системы эта замена не является слишком грубым приближением.
Тогда сила притяжения со стороны Солнца в этом приближе-нии должна быть направлена для всех планет к центру Солнца.
Если через Т обозначить периоды обращения планет, а через R - радиусы их орбит, то, согласно третьему закону Кеплера, для двух планет можно записать
т\ Л? Т2 R2
Нормальное ускорение при движении по окружности а = со2R. Поэтому отношение ускорений планет
Q-i ГлД.
7Г=-2~- (3-2-5)
2 t:r0
Используя уравнение (3.2.4), получим
Т2
Так как третий закон Кеплера справедлив для всех планет, .то ускорение каждой планеты обратно пропорционально квадрату расстояния ее до Солнца:
О о
а = -|. (3.2.6)
ВТ
Постоянная С2 одинакова для всех планет, но не совпадает с постоянной С2 в формуле для ускорения, сообщаемого телам земным шаром.
Выражения (3.2.2) и (3.2.6) показывают, что сила тяготения в обоих случаях (притяжение к Земле и притяжение к Солнцу) сообщает всем телам ускорение, не зависящее от их массы и убывающее обратно пропорционально квадрату расстояния между ними:
F~a~-2. (3.2.7)
R
Закон всемирного тяготения
Существование зависимостей (3.2.1) и (3.2.7) означает, что сила всемирного тяготения 12
ТП.Л Ш
F ~
R2? ТТЬ-і ТПп
F = G
В 1667 г. Ньютон окончательно сформулировал закон все-мирного тяготения:
(3.2.8) R
Сила взаимного притяжения двух тел прямо пропорци-ональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Коэффициент про-порциональности G называется гравитационной постоянной.
Взаимодействие точечных и протяженных тел
Закон всемирного тяготения (3.2.8) справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.5). Подобного рода силы называются центральными.
Для нахождения силы тяготения, действующей на данное тело со стороны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно раз-деляют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3.6). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.
Есть, однако, один практически важный случай, когда формула (3.2.8) применима к протяженным телам. Можно дока-
m^
Fi Рис. 3.5 Рис. 3.6
зать, что сферические тела, плот-ность которых зависит только от расстояний до их центров, при рас-стояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (3.2.8). В этом слу-чае R - это расстояние между центрами шаров.
И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (3.2.8) следует понимать расстояние от данного тела до центра Земли.
Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.
? 1. Расстояние от Марса до Солнца на 52% больше расстояния от Земли до Солнца. Какова продолжительность года на Марсе? 2. Как изменится сила притяжения между шарами, если алюминиевые шары (рис. 3.7) заменить стальными шарами той же массы? " того же объема?