Какой звук мы слышим. Тексты детских стихов и песенок, используемых в блоге. Слуховые проводящие пути

Слух является одним из важных органов чувств для всех обитателей планеты, с его помощью многие животные определяют местонахождение своего врага. Все стихийные бедствия также...

Слух является одним из важных органов чувств для всех обитателей планеты, с его помощью многие животные определяют местонахождение своего врага. Все стихийные бедствия также сопровождаются определенными звуками, которые не всегда доступы человеческому уху, но на которые безошибочно реагируют животные. Человек находится в постоянном окружении звуков, многие из них проходят мимо сознания. Слух настроен таким образом, что четко воспринимаются мозгом только жизненно важные сигналы, не очень важные игнорируются. Звуки могут по-разному воздействовать на восприятие, одни нравятся, другие раздражают, многие из них способствуют созданию в воображении тех или иных визуальных образов.

Особенности восприятия звуков

Человеческий организм отличается сложным устройством, ухо не является исключением. Строение органов слуха позволяет преобразовывать и передавать звуки для распознавания в мозг, все эти процессы происходят преимущественно в височных долях. В мозгу определяется громкость, высота, направление происхождения и другие характеристики звука. Оценка ситуации производится на основе информации, полученной из обоих ушей одновременно. Внутри уха хранятся определенные шаблоны уже распознанных звуков, за счет них обеспечивается правильная сортировка информации и определение ее первоисточника.

Известно, что скорость распознавания знакомых звуков (голосов близких людей, сигналов опасности) намного выше, по сравнению с незнакомыми звуками. При ухудшении слуха мозг начинает получать недостоверные данные, что приводит к ошибкам в распознавании информации. За слух отвечают не только соответствующие органы, но и мозг, правильное распознавание звуков достигается только за счет слаженной работы этих органов.

Строение органов слуха

Слуховой анализатор состоит из четырех частей:

  1. Наружное ухо, в данную категорию относятся следующие органы: барабанная перепонка, ушная раковина, слуховой проход. Барабанная перепонка выполняет функцию изоляции слухового прохода от окружающей среды. Длина слухового прохода составляет 2,5 см, он имеет изогнутую форму, его поверхность покрыта железами, выделяющими ушную серу и небольшими волосками. Слуховой проход выполняет функцию поддержания необходимого уровня температуры и влажности внутри уха.
  2. Среднее ухо – в это понятие входит компонент слухового анализатора, орган расположен за барабанной перепонкой и наполнена воздухом, с носоглоткой соединяется евстахиевой трубой. Евстахиева труба — это закрытый в обычном состоянии узкий хрящевой канал, который открывается при совершении глотательных движений, после чего пространство заполняется воздухом. Внутри среднего уха находятся три небольшие слуховые косточки: молоточек, наковальня и стремя. Молоточек соединяется со стременем, которое соединяется уже с улиткой во внутреннем ухе. Барабанная перепонка находится в постоянном движении под воздействием звуков, ее колебания передаются на слуховые косточки.
  3. Внутреннее ухо представляет собой несколько структур, за слух отвечает только улитка. Улитка получила свое название из-за спиральной формы, орган оснащен тремя каналами, заполненными лимфатическими жидкостями. Состав жидкости в среднем канале существенно отличается от остальных. Непосредственно за слух отвечает расположенный в среднем ухе Кортиев орган, он состоит из тысяч мельчайших волосков, улавливающих колебания, создаваемые движущейся по каналу жидкостью. В этом же месте генерируются электрические импульсы, передаваемые в кору мозга. Каждая волосовая клетка реагирует на определенный звук, при ее гибели человек перестает воспринимать звук, за который она отвечала.

Слуховые проводящие пути

Слуховые пути представляют собой совокупность волокон, проводящих нервные импульсы от улитки дослуховых центров, за счет них происходит восприятие звука мозгом. Расположены эти слуховые центры в височных долях головного мозга, время, за которое звук поступает через внешнее ухо к мозгу, составляет 10 миллисекунд.

Как мы слышим

Звуковые волны перед тем как быть распознанными мозгом, проделывают долгий путь. Колебания воздуха заставляют вибрировать барабанную перепонку, после чего звук передается на протянутые через все среднее ухо слуховые косточки, соединяющие улитку и барабанную перепонку. На следующем этапе колебания передаются на заполняющую улитку жидкость, в результате чего раздражаются клетки внутреннего уха. Мозг улавливает эти раздражения и распознает речь, шумы, музыку и т.д. За направление, откуда идет звук, отвечают полукружные каналы, расположенные в лабиринте в трех перпендикулярных друг другу областях. Эти каналы называют еще вестибулярным аппаратом или органом равновесия.

При изменении положения тела полукружные каналы также перемещаются, заполняющая их инерционная жидкость вследствие инерционности не успевает за движениями и смещается относительно стенок канала. Специальные рецепторы следят за всеми перемещениями жидкости, информация о всех наблюдениях поступает в мозг.

Рецепторные клетки вестибулярного аппарата погружены в заполняющую внутреннее ухожидкость, информация о всех движениях поступает в мозжечок, в котором осуществляется сбор и сопоставление всех данных. После этого во все системы организма направляются команды, позволяющие поддерживать равновесие. Информация о результатах поступает в головной мозг.

Индивидуальные факторы

Человек обладает удивительной способностью воспринимать не только звуки, но и интонацию. Выводы о том или ином звуки формируются на основании собственных ощущений, на восприятие оказывают влияние следующие факторы:

  • чувствительность;
  • восприимчивость;
  • особенности центральной нервной системы.

Маленькие дети распознают незнакомого человека именно по интонации, это происходит за счет того, что у малышей доминирует эмоционально-образное мышление, любая речь воспринимается в первую очередь эмоционально. Интонация позволяет определить настроение человека, насколько он грустный или веселый. Механизм распознавания интонации базируется на подсознании, человек даже не задумывается об этом.

Многие женщины больше значения придают именно интонации речи, а не ее содержанию. В первую очередь внимание уделяется не тому, что сказал собеседник, а как он сказал, так как смысл по-разному произнесенного предложения отличается. Стоит отметить, что способностью правильно распознавать информацию обладают не все люди, иногда собеседнику могут приписываться собственные эмоции. Мужчины менее чувствительны и эмоциональны, для них большую важность имеет содержание фразы, а не интонация.

Голос матери, щебетанье птиц, шелест листвы, лязг машин, раскаты грома, музыка... Человек погружается в океан звуков буквально с первых минут жизни. Звуки заставляют нас волноваться, радоваться, тревожиться, наполняют спокойствием или страхом. А ведь все это не более чем колебания воздуха, звуковые волны, которые, попадая через наружный слуховой проход на барабанную перепонку, вызывают ее колебания. Через систему расположенных в среднем ухе слуховых косточек (молоточек, наковальню и стремечко) звуковые колебания передаются далее во внутреннее ухо, по форме напоминающее раковину виноградной улитки.

Улитка представляет собой сложную гидромеханическую систему. Это тонкостенная костная трубка конической формы, закрученная в спираль. Полость трубки заполнена жидкостью и по всей длине разделена особой многослойной перегородкой. Одним из слоев этой перегородки является так называемая базилярная мембрана, на которой и расположен собственно рецепторный аппарат - кортиев орган. В рецепторных волосковых клетках (поверхность их покрыта мельчайшими протоплазматическими выростами в виде волосков) и происходит удивительный, до конца еще не изученный процесс преобразования физической энергии звуковых колебаний в возбуждение этих клеток. Дальше информация о звуке в виде нервных импульсов по волокнам слухового нерва, чувствительные окончания которого подходят к волосковым клеткам, передается в слуховые центры головного мозга.

Существует и другой путь, по которому звук, минуя наружное и среднее ухо, достигает улитки - непосредственно через кости черепа. Но интенсивность воспринимаемого звука в этом случае значительно меньше, чем при воздушном звукопроведении (отчасти это объясняется тем, что при прохождении через кости черепа энергия звуковых колебаний затухает). Поэтому значение костной звукопроводимости у здорового человека относительно невелико.

Однако способность воспринимать звуки двойным путем используется в диагностике нарушений слуха: если в ходе обследования выясняется, что восприятие звуков путем воздушного звукопроведения нарушено, а путем костного полностью сохранено, врач может сделать вывод, что пострадал только звукопроводящий аппарат среднего уха, звуковосприни-мающий же аппарат улитки не поврежден. В таком случае костное звукопроведение и оказывается своего рода «палочкой-выручалочкой»: больной может пользоваться слуховым аппаратом, от которого звуковые колебания прямо через кости черепа передаются кортиеву органу.

Улитка не только воспринимает звук и трансформирует его в энергию возбуждения рецепторных клеток, но, что не менее важно, осуществляет начальные этапы анализа звуковых колебаний, в частности частотный анализ.

Такой анализ можно провести с помощью технических приборов - частотных анализаторов. Улитка делает это гораздо быстрее и, естественно, на другой «технической базе».

По ходу канала улитки, в направлении от овального окна к ее" вершине постепенно увеличивается ширина перегородки и уменьшается ее жесткость. Поэтому различные участки перегородки резонируют на звуки разных частот: при действии звуков высокой частоты максимальная амплитуда колебаний наблюдается у основания улитки, вблизи овального окна, а низкочастотным звукам соответствует зона максимального резонанса у вершины. Звуки определенной частоты имеют свое преимущественное представительство в определенной части улитковой перегородки и, следовательно, воздействуют только на те нервные волокна, которые связаны с волосковыми клетками возбужденной области кортиева органа. Поэтому каждое нервное волокно реагирует на ограниченный диапазон частот; такой способ анализа получил название пространственного, или по принципу места.

Помимо пространственного, имеется еще и временной, когда частота звука воспроизводится и в реакции рецепторных клеток и до известного предела в реакции волокон слухового нерва. Оказалось, что волосковые клетки обладают свойствами микрофона: они преобразуют энергию звуковых колебаний в электрические колебания той же частоты (так называемый микрофонный эффект улитки). Предполагается, что существуют два способа передачи возбуждения от во-лосковой клетки на нервное волокно. Первый, электрический, когда электрический ток, возникший в результате микрофонного эффекта, непосредственно вызывает возбуждение нервного волокна. И второй, химический, когда возбуждение волосковой клетки передается на волокно с помощью вещества-передатчика, то есть медиатора. Временной и пространственный способы анализа в совокупности обеспечивают хорошее различение звуков по частоте.

Итак, информация о звуке передана волокну слухового нерва, но высшего слухового центра, расположенного в височной доле коры большйх полушарий, она достигает не сразу. Центральная, находящаяся в мозгу, часть слуховой системы состоит из нескольких центров, каждый из которых насчитывает сотни тысяч и миллионы нейронов. В этих центрах существует своеобразная иерархия, и при переходе от нижних к верхним реакция нейронов На звук изменяется.

На нижних уровнях центральной части слуховой системы, в слуховых центрах продолговатого мозга, импульсная реакция нейронов на звук хорошо отражает его физические свойства: длительность реакции точно соответствует длительности сигнала; чем больше интенсивность звука, тем больше (до определенного предела) число и частота импульсов и тем больше число нейронов, вовлекаемых в реакцию, и т. д.

При переходе от нижних слуховых центров к верхним постепенно, но неуклонно снижается импульсная активность нейронов. Создается впечатление, что нейроны, составляющие верхушку в иерархии, трудятся гораздо меньше, чем нейроны нижних центров.

И действительно, если у подопытного животного удалить высший слуховой анализатор, почти не нарушается ни абсолютная слуховая чувствительность, то есть способность обнаружения предельно слабых звуков, ни способность к различению звуков по частоте, интенсивности и длительности.

В чем же в таком случае состоит роль верхних центров слуховой системы?

Оказывается, нейроны высших слуховых центров в отличие от нижних работают по принципу избирательности, то есть реагируют лишь на звуки с определенными свойствами. При этом характерно, что они могут откликаться только на сложные звуки, например, на звуки, изменяющиеся во времени по частоте, на движущиеся звуки или только на отдельные слова и звуки речи. Эти факты дают основание говорить о специализированной избирательной реакции нейронов высших слуховых центров на сложные звуковые сигналы.

И это очень важно. Ведь избирательная реакция этих нейронов проявляется по отношению к таким звукам, которые биологически ценны. Для человека это прежде всего звуки речи. Биологически важный звук как бы экстрагируется из лавины окружающих звуков и обнаруживается специализированными нейронами даже при очень слабой его интенсивности и на линии звуковых помех. Именно благодаря этому мы можем различить, к примеру, в грохоте сталепрокатного цеха слова, сказанные собеседником.

Специализированные нейроны обнаруживают свой звук даже в том случае, если изменяются его физические свойства. Какое-либо слово, произнесенное мужским, или женским, или детским голосом, громко или тихо, быстро или медленно, всегда воспринимается как одно и то же слово.

Ученых интересовал вопрос, каким образом достигается высокая избирательность нейронов высших центров. Известно, что нейроны способны реагировать на раздражение не только возбуждением, то есть потоком нервных импульсов, но и торможением - подавлением способности генерировать импульсы. Благодаря процессу торможения ограничивается круг сигналов, на которые нейрон дает реакцию возбуждения. Характерно, что тормозные процессы особенно хорошо выражены именно в верхних центрах слуховой системы. Как известно, процессы торможения и возбуждения требуют затраты энергии. Поэтому никак нельзя считать, что нейроны верхних центров бездельничают; они интенсивно работают, только работа у них иная, чем у нейронов нижних слуховых центров.

А что же происходит с потоками нервных импульсов, идущими от нижних слуховых центров? Как используется эта информация, если высшие центры ее отвергают?

Во-первых, отвергают не всю информацию, а лишь какую-то ее часть. Во-вторых, импульсы от нижних центров идут не только к верхним, они поступают и к двигательным центрам мозга и к так называемым неспецифическим системам, которые имеют непосредственное отношение к организации различных элементов поведения (позы, движения, внимания) и эмоциональных состояний (контактности, агрессии). Эти системы мозга осуществляют свою деятельность на основе интеграции той информации о внешнем мире, которая поступает к ним по разным сенсорным каналам.

Такова в общих чертах сложная и далеко не полностью изученная картина работы слуховой системы. Сегодня многое известно о процессах, происходящих при восприятии звуков, и, как видите, специалисты в значительной степени могут ответить на вопрос, вынесенный в заглавие, «Как мы слышим?». Но пока еще нельзя объяснить, почему одни звуки нам приятны, а другие неприятны, почему одна и та же музыка одному человеку нравится, а другому нет, почему одни физические свойства звуков речи воспринимаются нами как приветливые интонации, а другие как грубые. Эти и другие проблемы решают исследователи одной из интереснейших областей физиологии

Я. Альтман, Е. Радионова, доктор медицинских наук, доктор биологических наук

Прежде чем перейти к ознакомлению с устройством радиоприемников, усилителей и других приборов, применяемых при радиовещании и радиосвязи, необходимо уяснить, что такое звук, как он возникает и распространяется, как устроены и работают микрофоны, познакомиться с устройством и работой громкоговорителей.

Звуковые колебания и волны. Если ударить по струне какого-либо музыкального инструмента (например, гитары, балалайки), то она начнет колебаться, т. е. совершать движения то в одну, то в другую сторону от своего начального положения (положения покоя). Такие механические колебания, вызывающие ощущение звука, называются звуковыми.

Наибольшее расстояние, на которое струна отклоняется в процессе колебаний от своего положения покоя, носит название амплитуды колебаний.

Передача звука от колеблющейся струны до нашего уха происходит следующим образом. В то время, когда средняя часть струны перемещается в сторону, где мы находимся, она «теснит» «находящиеся около нее с этой стороны частицы воздуха и этим создает «сгущение» этих частиц, т. е. около струны возникает область повышенного воздушного давления. Это увеличенное в некотором объеме воздуха давление передается соседним его слоям; в результате область «сгущенного» воздуха распространяется в окружающем пространстве. В следующий момент времени, когда средняя часть струны перемещается в обратную сторону, около нее возникает некоторое «разрежение» воздуха (область пониженного давления), которое распространяется вслед за областью «сгущенного» воздуха.

За «разрежением» воздуха следует опять «сгущение» (так как средняя часть струны опять будет двигаться в нашу сторону) и т. д. Таким образом, при каждом колебании (движении вперед и назад) струны в воздухе возникнут область повышенного давления и область пониженного давления, которые удаляются от струны.

Подобным же образом звуковые волны создаются при работе громкоговорителя.

Звуковые волны несут в себе энергию, полученную от колеблющейся струны или диффузора (бумажного конуса) громкоговорителя, и распространяются в воздухе со скоростью около 340 м/сек. Когда звуковые волны достигают уха, они приводят в колебание его барабанную перепонку. В тот момент, когда уха достигает область «сгущения» звуковой волны, барабанная перепонка несколько прогибается внутрь. Когда же до нее доходит область «разрежения» звуковой волны, барабанная перепонка выгибается несколько наружу. Так как сгущения и разрежения в звуковых волнах следуют все время друг за другом, то и барабанная перепонка то прогибается внутрь, то выгибается наружу, т. е. совершает колебания. Эти колебания передаются через сложную систему среднего и внутреннего уха по слуховому нерву в мозг, и в результате мы ощущаем звук.

Чем больше амплитуда колебаний струны и ближе к ней находится ухо, тем более громким воспринимается звук.

Динамический диапазон. При очень больших давлениях на барабанную перепонку, т. е. при очень громких звуках (например, при пушечном выстреле), ощущается боль в ушах. На средних звуковых частотах (см. ниже) болевое ощущение возникает, когда звуковое давление достигает величины примерно 1 г/см2, или 1 000 бар *. Увеличение ощущения громкости при дальнейшем усилении звукового давления уже не чувствуется.

*Бар — единица, применяемая для измерения величины звукового давления.

Очень слабое звуковое давление на барабанную перепонку не вызывает ощущения звука. Наименьшее звуковое давление, ‘при котором наше ухо начинает слышать, называется порогом чувствительности уха. На средних частотах (см. ниже) порог чувствительности уха составляет примерно 0,0002 бара.

Таким образом, область нормального ощущения звука лежит между двумя границами: нижней — порогом чувствительности и верхней, при которой возникает болевое ощущение в ушах. Эта область носит название динамического диапазона слуха.

Отметим, что увеличение звукового давления не дает пропорционального увеличения громкости звука. Ощущение громкости возрастает гораздо медленнее, чем звуковое давление.

Децибелы. В пределах динамического диапазона ухо может почувствовать увеличение «или уменьшение громкости простого однотонного звука (при слушании его в полной тишине), если звуковое давление на средних частотах соответственно увеличивается или уменьшается примерно на 12%, т. е. в 1,12 раза. Исходя из этого, весь динамический диапазон слуха разбит на 120 уровней громкости, подобно тому, как шкала термометра между точками таяния льда и кипения воды разделена на 100 градусов. Уровни громкости по этой шкале измеряются в особых единицах— децибелах (сокращенно пишут дб).

В любой части этой шкалы изменение уровня громкости на 1 дб соответствует изменению звукового давления в 1,12 раза. Нуль децибел («нулевой» уровень громкости) соответствует порогу чувствительности уха, т. е. звуковому давлению 0,0002 бара. При уровне свыше 120 дб возникает болевое ощущение в ушах.

Для примера укажем, что при тихом разговоре на расстояни 1 м от говорящего получается уровень громкости около 40—50 дб, что соответствует эффективному звуковому давлению 0,02—0,06 бара; наибольший уровень громкости звучания симфонического оркестра составляет 90— 95 дб (звуковое давление 7—12 бар).

При пользовании радиоприемниками радиослушатели, применяясь к размерам своих комнат, звучание громкоговорителя регулируют так, что при самых громких звуках на расстоянии 1 м от громкоговорителя получается уровень громкости 75—85 дб (соответственно звуковые давления примерно 1—3,5 бара). В условиях сельских местностей вполне достаточно иметь максимальный уровень громкости звучания радиопередачи не свыше 80 дб (звуковое давление 2 бара).
Шкалой децибел в радиотехнике широко пользуются также для сравнения уровней громкости. Чтобы узнать, во сколько раз одно звуковое давление больше другого, когда известна разница между соответствующими им уровнями громкости в децибелах, нужно число 1,12 умножить само на себя столько раз, сколько мы имеем децибел. Так, изменение уровня громкости на 2 (56 соответствует изменению звукового давления в 1,12 . 1,12, т. е. примерно в 1,25 раза; изменение уровня на 3 дб имеет место при изменении звукового давления в 1,12- 1,12 . 1,12, т. е. приблизительно в 1,4 раза. Подобным же образом можно определить, что 6 дб соответствуют изменению звукового давления примерно в 2 раза, 10 дб—приблизительно <в 3 раза, 20 дб — в 10 раз, 40 дб — в 100 раз и т. д.

Период и частота колебаний. Звуковые колебания характеризуются не только амплитудой, но также периодом и частотой. Периодом колебания называется время, в течение которого струна (или любое другое тело, создающее звук, например диффузор громкоговорителя) перемещается из одного крайнего положения в другое и обратно, т. е. совершает одно полное колебание.

Частотой звуковых колебаний называется число колебаний звучащего тела, совершаемых в течение 1 сек. Она измеряется в герцах (сокращенно пишут гц).

Если например, за 1 сек. (происходит 440 периодов колебаний струны (эта частота соответствует музыкальной ноте ля), то говорят, что она колеблется с частотой 440 гц. Частота и период колебаний являются величинами, обратными друг другу, например при частоте колебаний 440 гц период колебаний равен 1/440 сек.; если период колебания равен 1/1 000 сек., то частота этих колебаний 1000 гц.

Полоса звуковых частот. От частоты колебаний зависит высота звука или тона. Чем больше частота колебаний, тем выше звук (тон), а чем меньше частота колебаний, тем он ниже. Самый низкий звук, который может услышать человек, имеет частоту около 20 гц, а самый высокий—около 16 000—20 000 гц. В этих пределах или, как говорят, в этой полосе частот находятся создаваемые человеческими голосами и музыкальными инструментами звуковые колебания.

Заметим, что речь и музыка, а также разного рода шумы представляют собой звуковые колебания с очень сложней комбинацией различных частот (тонов различной высоты), непрерывно изменяющейся в процессе разговора или музыкального исполнения.

Гармоники. Звук, воспринимаемый ухом как тон одной определенной высоты (например, звук струны музыкального инструмента, свисток паровоза), на самом деле состоит из многих разных тонов, частоты которых относятся друг к другу как целые числа (один -к двум, один к трем и т. д.). Так, например, тон с частотой 440 гц (нота ля) одновременно сопровождается дополнительными тонами с частотами 440 . 2 = 880 гц, 440 -3=1 320 гц и т. д. Эти дополнительные частоты называются гармониками (или обертонами). Число показывающее, во сколько- раз частота данной гармоники больше основной частоты называется номером гармоники. Например, для основной частоты 440 гц частота 880 гц будет второй гармоникой, частота 1 320 гц — третьей и т. д. Гармоники всегда звучат слабее основного тона.

Наличием гармоник и соотношением амплитуд различных гармоник обусловливается тембр звука, т. е. его «окраска», отличающая данный звук от другого звука с той же основной частотой. Так, если наиболее сильной будет третья гармоника, звук приобретает один тембр. Если же наиболее сильной будет какая-либо другая гармоника, звук будет иметь другой тембр. Изменение силы звучания различных гармоник приводит к изменению или искажению тембра звука.

В. Н. ДОГАДИН и Р. М. МАЛИНИН
КНИГА СЕЛЬСКОГО РАДИОЛЮБИТЕЛЯ

Все процессы записи, обработки и воспроизведения звука, так или иначе, работают на один орган, которым мы воспринимаем Звуки - ухо. Без понимания того, что и как мы слышим, что нам важно, а что нет, в чем причина тех или иных музыкальных закономерностей - без этих и других мелочей невозможно спроектировать хорошую аудио аппаратуру, нельзя эффективно сжать или обработать звук. То, о чём я расскажу - лишь самые основы (Да всего описать и не получится в рамках этой публикации).
- процесс звуковосприятия еще далеко не до конца изучен, однако, изложенные здесь факты могут показаться интересными даже тем, кто знает, что такое децибел...

Немного анатомии
(устройство уха - коротко и ясно)

Снаружи мы видим так называемое внешнее ухо (ушная раковина). Затем идет канал - примерно 0.5 см в диаметре и около 3 см в длину (слуховой проход (если ухо загрязнено, страдает качество слуха)).
Затем - барабанная перепонка (мембрана), к которой присоединены косточки - среднее ухо. Эти косточки передают вибрацию барабанной перепонки далее - на другую перепонку,
во внутреннее ухо - трубку с жидкостью, около 0.2 мм диаметром и, приблизительно, 3-4 см длинной, закрученную как улитка. Смысл наличия среднего уха в том, что колебания воздуха слишком слабы, чтобы напрямую сниматься с барабанной перепонки, и среднее ухо вместе с барабанной перепонкой и перепонкой внутреннего уха составляют гидравлический усилитель - площадь барабанной перепонки во много раз больше площади перепонки (мембраны) внутреннего уха, поэтому давление (которое равно F/S) усиливается в десятки раз.
Во внутреннем ухе, по всей его длине, еще одна вытянутая мембрана, жесткая к началу уха и мягкая к концу. Каждый участок этой мембраны колеблется в определённом частотном диапазоне, низкие частоты - в мягком участке ближе к концу, самые высокие - в самом начале. Вдоль этой мембраны расположены нервы, которые воспринимают колебания и передают их в мозг, используя два принципа:
Первый - ударный принцип. Поскольку нервы еще способны передавать колебания (бинарные импульсы) с частотой до 400-450 Гц, именно этот принцип влоб используется в области низкочастотного слуха. Там сложно иначе - колебания мембраны слишком сильны и затрагивают слишком много нервов. Слегка расширенный ударный принцип позволяет воспринимать частоты до примерно 4 кГц, засчет того, что несколько (до десяти) нервов ударяют в разных фазах, складывая свои импульсы. Это хорошо тем, что мозг воспринимает информацию более полно - с одной стороны, мы всё-таки имеем легкое частотное разделение, а с другой - можем еще анализировать сами колебания, их форму и особенности, а не просто частотный спектр. Этот принцип действует на самой важной для нас части - спектре человеческого голоса. Да и вообще, до 4 кГц находится вся наиболее важная для нас информация.
Ну и второй принцип - просто местоположение возбуждаемого нерва, применяется для восприятия звуков более 4 кГц. Тут уже кроме факта нас вообще ничего не волнует - ни фаза, ни скважность... Голый спектр.
Таким образом, в области высоких частот мы имеем спектральный слух не очень высокого разрешения, а для частот близких к человеческому голосу - более полный, основанный не только на разделении спектра, а еще и на дополнительном анализе информации самим мозгом, давая более полную стерео картину.
Основное восприятие звука происходит в диапазоне от 1 до 4 кГц, корректная передача этого частотного отрезка - первое условие естественности звучания.

О чувствительности
(по мощности и частотной)
Теперь о децибелах. Я не буду с нуля объяснять, что это такое, вкратце - относительная логарифмическая мера громкости (мощности) звука, наиболее хорошо отражающая человеческое восприятие громкости, и в то же время достаточно просто вычисляемая.
В акустике принято измерять громкость в дБ SPL (Sound Pressure Level – уровень звукового давления). Ноль этой шкалы находится примерно на минимальном звуке, который слышит человек. Отсчет ведется, естественно, в положительную сторону. Человек может осмысленно слышать звуки громкостью примерно до 120 дБ SPL. При 140 дБ ощущается сильная боль, при 150 дБ наступает повреждение слуха. Нормальный разговор - примерно 60 - 70 дБ SPL. Далее, при упоминании дБ подразумевается дБ от нуля по SPL.
Чувствительность уха к разным частотам очень сильно отличается. Максимальна чувствительность в районе 1 - 4 кГц, основные тона человеческого голоса. Сигнал 3 кГц - это и есть тот звук, который слышен при 0 дБ. Чувствительность сильно падает в обе стороны - например, для звука в 100 Гц нам нужно уже целых 40 дБ (в 100 раз большая амплитуда колебаний), для 10 кГц - 20 дБ. Обычно мы можем сказать, что два звука отличаются по громкости, при разнице, примерно, в 1 дБ. Несмотря на это, 1 дБ - скорее много, чем мало. Просто у нас очень сильно компрессированное, (выровненное) восприятие громкости. Зато весь диапазон - 120 дБ - воистину огромен, по амплитуде это миллионы раз!
Кстати, увеличение амплитуды в два раза соответствует увеличению громкости на 6 дБ. Внимание! не путайте: 12 дБ - в 4 раза, но разница 18 дБ - уже 8 раз! (а не 6, как могло подуматься.) дБ - логарифмическая мера.
Аналогична по свойствам и спектральная чувствительность. Мы можем сказать, что два звука (простых тона) отличаются по частоте, если разница между ними составляет около 0.3% в районе 3 кГц, а в районе 100 Гц требуется различие уже на 4%! Для справки - частоты нот (если брать вместе с полутонами, то есть две соседние клавиши фортепьяно, включая черные) отличаются на, примерно, 6%.
В общем, в районе 1 - 4 кГц чувствительность уха по всем параметрам максимальна, и составляет не так уж и много, если брать не логарифмированные значения, с которыми приходится работать цифровой технике.
Примите на заметку - многое из того, что происходит при цифровой обработке звука, может выглядеть ужасно в цифрах, и при этом звучать неотличимо от оригинала.
При цифровом представлении звука, понятие дБ считается от нуля и вниз, в область отрицательных значений. Ноль - максимальный уровень, представимый цифровой схемой. Если, при цифровой записи, уровень входного сигнала выбран не правильно – происходит превышение максимально разрешенного уровня сигнала, все сигналы, превышающие 0 дБ, обрезаются до 0 дБ – образуются клипы - вместо синусоиды на сигналограмме возникают прямоугольники (на слух воспринимаемые как щелчки (если превышение незначительно). Для того чтобы клипов не возникало, необходимо записывать звук с небольшим запасом по уровню -3 дБ.

О фазовой чувствительности
Если говорить об органах слуха в целом - природа создала их такими, какими создала, руководствуясь прежде всего соображениями целесообразности. Фаза частот нам не важна абсолютно, так как совершенно не несет полезной информации. Фазовое соотношение отдельных частот кардинально меняется от перемещений головы, окружающей обстановки, эха, резонансов.... Эта информация никак не используется мозгом, и поэтому мы не восприимчивы к фазам частот. Надо, однако, отличать изменения фазы в малых пределах (до нескольких сот градусов) от серьезных фазовых искажений, которые могут изменить временные параметры сигналов, когда речь уже идет не об изменениях фаз, а скорее о частотных задержках - когда фазы отдельных компонент настолько варьируются, что сигнал распадается во времени, изменяет свою длительность. Например, если мы слышим только отраженный звук, эхо с другого конца в огромном зале - в некотором роде это лишь вариация фаз сигналов, но настолько сильная, что вполне воспринимается по косвенным (временным) признакам. И вообще глупо называть это изменениями фаз - грамотнее говорить о задержках.
В общем, к незначительным вариациям фаз (однако, как посмотреть), до противофазы наше ухо абсолютно не чувствительно. Но всё это касается лишь одинаковых фазовых изменений в обоих каналах! Несимметричные фазовые сдвиги очень важны, об этом - ниже.

Об объемном восприятии
Человек может воспринимать пространственное положение источника звука.
Есть два принципа стерео восприятия, которые соответствуют двум принципам передачи звуковой информации из уха в мозг (об этом
см. выше).
Первый принцип - для частот ниже 1 кГц, их слабо волнуют препятствия в виде человеческой головы - они просто огибают её. Эти частоты воспринимаются ударным способом, передавая в мозг информацию об отдельных звуковых импульсах. Временное разрешение передачи нервных импульсов позволяет использовать эту информацию для определения направления звука - если звук в одно ухо приходит раньше другого (разница порядка десятков микросекунд), мы можем засечь его
расположение в пространстве - ведь запаздывание происходит из-за того, что звуку пришлось пройти еще дополнительно расстояние до второго уха, затратив на это какое-то время. Этот фазовый сдвиг звука одного уха относительно другого и воспринимается как информация, позиционирующая звуки.
И второй принцип - используется для всех частот, но в основном - для тех, что выше 2 кГц, которые отлично затеняются головой и ушной раковиной - просто определение разницы в громкости между двумя ушами.
Еще один важный момент, который позволяет нам гораздо точнее определять местоположение звука - возможность повернуть голову и «посмотреть» на изменение параметров звучания. Достаточно буквально нескольких градусов свободы, и мы можем определить звук (источник звука) почти точно. Принято считать, что направление с легкостью определяется с точностью до одного градуса. Этот прием пространственного восприятия - то, что почти не дает сделать реалистичный объемный звук в играх - по крайней мере, до тех пор, пока наша голова не будет облеплена поворотными датчиками.. Ведь звук в играх, даже рассчитанный на современные 3д карты, не зависит от поворота нашей реальной головы, поэтому полная картина почти никогда не складывается, и, сложиться, к сожалению, не может.
Таким образом, для стерео восприятия во всех частотах важна громкость правого и левого канала, а в частотах, где это возможно, до 1 - 2 кГц, дополнительно оцениваются и относительные фазовые сдвиги. Дополнительная информация - подсознательный поворот головы и мгновенная оценка результатов.
Фазовая информация в районе 1 - 4 кГц имеет приоритет над разницей в громкости (амплитуде), хотя определенная разница уровней перекрывает фазовую разницу, и наоборот. Не совсем соответствующие или прямо противоречивые данные (например - правый канал громче левого, однако запаздывает) дополняют наше восприятие окружения - ведь эти несоответствия рождаются из окружающих нас отражающих/поглощающих поверхностей. Таким образом, в очень ограниченном объеме воспринимается характер помещения, в котором находится человек. Этому также помогают общие для обоих ушей фазовые вариации огромного уровня - задержки, эхо (реверберация).

О нотах и октавах
Гармоники
Слово «гармоника» здесь означает гармоническое колебание, или проще - синусоиду, простой тон. В аудио - технике, однако, применяют понятие - пронумерованные гармоники. Дело в том, что множество физических, акустических процессов дают дополнение какой-то определенной частоты частотами, ей кратными. Простой (основной) тон 100 Гц сопровождают гармоники 200, 300, 400 и так далее Гц. Звук скрипки, например - это почти одни сплошные гармоники, основной тон имеет лишь немного большую мощность, чем его гармонические дополнения - обертоны. Вообще говоря, характер звучания музыкального инструмента (тембр) зависит от наличия и мощностей его гармоник, тогда как основной тон определяет ноту.
Вспоминаем дальше. Октава в музыке - интервал изменения частоты основного тона в два раза. Нота ля суб-контр октавы, к примеру, имеет частоту примерно - 27.5 Гц, контр- 55 Гц. Состав гармоник этих двух разных звуков имеет много общего - в том числе это 110 Гц (ля большой октавы), 220 Гц (малой), 440 Гц (первой) - и так далее. В этом основная причина того, что одинаковые ноты разных октав звучат в унисон - складывается влияние одинаковых высших гармоник.
Дело в том, что гармоники нам обеспечены всегда - даже если музыкальный инструмент воспроизводит только один основной тон, высшие гармоники (обертоны) появятся уже в ухе, в процессе спектрального восприятия звука. Нота самой нижней октавы почти всегда включает в себя в качестве гармоник те же ноты всех вышестоящих октав.
Наше звуковосприятие почему-то устроено так, что нам приятны гармоники, и неприятны частоты, которые выбиваются из этой схемы - два звука, 1 кГц и 4 кГц, вместе будут звучать приятно - ведь это суть одна нота через две октавы, пусть и не калиброванного по стандартной шкале инструмента. Как уже упоминалось - это то, что часто встречается в природе как следствие естественных физических процессов. Но, если взять два тона 1 кГц и 3.1 кГц - будет звучать раздражающе!
Октава - понятие, полезное не только для музыкантов. Октава в акустике - это изменение частоты звука в два раза. Мы уверенно слышим примерно полных 10 октав, это на две октавы выше, чем последняя октава фортепьяно. Странное дело, но в каждой октаве содержится примерно одинаковое для нас количество информации, хотя последняя октава - это весь район с 10 до 20 кГц. В старости мы практически перестаем слышать эту последнюю октаву, и это дает потерю слуховой информации не в два раза, а всего на 10% - что не так уж и страшно. Для справки - самая высокая нота фортепьяно - около 4,186 кГц. Тем не менее, спектр звучания этого
инструмента далеко выходит за 4,186 кГц за счет гармоник, реально покрывая весь наш звуковой диапазон. Так почти с любым музыкальным инструментом - основные тона почти никогда не выходят за 5 кГц, можно быть совершенно глухим к более высоким тонам, и, тем не менее, слушать музыку...
Даже если бы и были инструменты с более высокими тонами - слышимый гармонический состав их звучания был бы очень бедным. Сами смотрите - у инструмента в 6 кГц основного тона есть только одна слышимая гармоника - 12 кГц. Этого просто мало для наполненного, приятного звучания, какой тембр мы бы ни хотели получить в результате.
Важный параметр всех звуковых схем - гармонические искажения. Почти все физические процессы приводят к их появлению, и в звукопередаче их стараются сделать минимальными, чтобы не изменять тональную окраску звука, и просто не засорять звук лишней, отягощающей информацией. Гармоники, однако, могут давать звуку и приятную окраску - например, ламповый звук - это наличие большого (сравнительно с транзисторной техникой) числа гармоник, дающих звуку приятный, теплый характер, практически не имеющий аналогов в природе.

Принципы цифрового звука
Прежде всего, сам принцип представления звука в цифровой форме предполагает уничтожение какой-то части информации в нем. Исходная, непрерывная кривая, описывающая амплитуду звуковой волны, подвергается дискретизации - разбиению на отдельные интервалы (отсчеты), внутри которых амплитуда считается постоянной; таким образом фиксируются временные характеристики волны. Затем эти мгновенные значения амплитуды еще раз разбиваются на конечное число значений - теперь уже по самой величине амплитуды - и выбирается наиболее близкое из этих дискретных значений; так фиксируются амплитудные характеристики. Если говорить по отношению к графику (осциллограмме) звуковой волны, то можно сказать, что на него накладывается некая сетка - крупная или мелкая, которая определяет точность преобразования волны в цифровую форму.
Мелкость временной сетки - частота дискретизации - определяет, прежде всего, частотный диапазон преобразуемого звука. В идеальных условиях для передачи сигнала с верхней частотой F достаточно частоты дискретизации 2F (по теореме Котельникова), в реальных же, приходится выбирать некоторый запас. Точность же представления самих значений амплитуды - разрядность отсчетов - определяет в первую очередь уровень шумов и искажений, вносимых при преобразовании. Естественно - снова для идеального
случая, поскольку шумы и искажения вносятся и другими участками схемы.
В начале 80-х, когда разрабатывалась система "компакт-диск", ориентированная для бытового применения, по результатам экспертных оценок была выбрана частота дискретизации 44.1 кГц и разрядность отсчета 16 бит (65536 фиксированных уровней амплитуды). Этих параметров достаточно для точной передачи сигналов с частотой до 22 кГц, в которые вносится дополнительный шум на уровне примерно -96 дБ.
Поток чисел (серий двоичных цифр), описывающий звуковой сигнал, называют импульсно-кодовой модуляцией или ИКМ (Pulse Code Modulation, PCM), так как каждый импульс дискретизованного по времени сигнала представляется собственным цифровым кодом.
Чаще всего применяют линейное квантование, когда числовое значение отсчета пропорционально амплитуде сигнала. Из-за логарифмической природы слуха более целесообразным было бы логарифмическое квантование, когда числовое значение пропорционально величине сигнала в децибелах, однако это сопряжено с трудностями чисто технического характера.
Временная дискретизация и амплитудное квантование сигнала неизбежно вносят в сигнал шумовые искажения. В большинстве современных цифровых звуковых систем используются стандартные частоты дискретизации 44.1 и 48 кГц, однако частотный диапазон сигнала обычно ограничивается возле 20 кГц для оставления запаса по отношению к теоретическому пределу. Также наиболее распространено 16-разрядное квантование по уровню, что дает предельное соотношение сигнал/шум около 98 дБ. В студийной аппаратуре используются более высокие разрешения - 18-, 20, 24 и 32-разрядное квантование при частотах дискретизации 56, 96 и 192 кГц. Это делается для того, чтобы сохранить высшие гармоники звукового сигнала, которые непосредственно не воспринимаются
слухом, но влияют на формирование общей звуковой картины.
Для оцифровки более узкополосных и менее качественных сигналов частота и разрядность дискретизации могут снижаться (например, в телефонных линиях применяется 7или 8-разрядная оцифровка с частотами 8..12 кГц).
Сам цифровой звук и относящиеся к нему вещи принято обозначать общим термином Digital Audio; аналоговая и цифровая части звуковой системы обозначаются терминами Analog Domain и Digital Domain.

Что такое АЦП и ЦАП?
Аналогово-цифровой и цифро-аналоговый преобразователи. Первый преобразует аналоговый сигнал в цифровое значение амплитуды, второй выполняет обратное преобразование.
В англоязычной литературе применяются термины ADC и DAC, а совмещенный преобразователь называют codec (coder-decoder).
Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса. ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.
Для правильной работы АЦП входной сигнал не должен изменяться в течение времени преобразования, для чего на его входе обычно помещается схема выборки-хранения, фиксирующая мгновенный уровень сигнала и сохраняющая его в течение всего времени преобразования. На выходе ЦАП также может устанавливаться подобная схема, подавляющая влияние переходных процессов внутри ЦАП на параметры выходного сигнала.
При временной дискретизации спектр полученного импульсного сигнала в своей нижней части 0..Fa повторяет спектр исходного сигнала, а выше содержит ряд отражений (aliases, зеркальных спектров), которые расположены вокруг частоты дискретизации Fd и ее гармоник. При этом первое отражение спектра от частоты Fd в случае Fd = 2Fa располагается непосредственно за полосой исходного сигнала, и требует для его подавления аналогового фильтра (anti-alias filter) с высокой крутизной среза. В АЦП этот фильтр устанавливается на входе, чтобы исключить перекрытие спектров и их интерференцию, а в ЦАП - на выходе, чтобы подавить в выходном сигнале надтональные помехи, внесенные временной дискретизацией.

Что такое Dithering и Noise Shaping?
Методы обработки цифрового звукового сигнала, направленные на улучшение субъективного качества звучания ценой очевидного ухудшения его объективных характеристик (прежде всего - коэффициента нелинейных искажений и соотношения сигнал/шум).
Dithering (сглаживание) заключается в добавлении к сигналу небольшого количества шума (псевдослучайного цифрового сигнала) разного спектра (белый, розовый и т.п.). При этом заметно ослабляется корреляция ошибок квантования с полезным сигналом ("рассеиваются" ошибки округления) и, несмотря на некоторое увеличение шума, субъективное качество звучания заметно повышается. Уровень добавляемого шума выбирается в зависимости от задачи и колеблется от половины младшего разряда отсчета до нескольких разрядов.
Noise Shaping (формовка шума) заключается в преобразовании сильно зашумленного полезного сигнала с целью вытеснения чисто шумовых компонент в надтональную область с выделением в нижней части спектра основной энергии полезного сигнала. По существу, Noise Shaping является одним из видов PWM (Pulse Width Modulation - широтно-импульсная модуляция, ШИМ) с дискретной шириной импульса. Сигнал, обработанный этим методом, требует обязательной фильтрации с подавлением высоких частот - это выполняется либо цифровым, либо аналоговым способом.
Основное применение Noise Shaping находит в области представления цифровых сигналов отсчетами меньшей разрядности с повышенной частотой следования. В delta-sigma ЦАП для повышения частоты следования отсчетов увеличивается в десятки раз частота дискретизации, на которой из исходных многоразрядных отсчетов формируются серии отсчетов разрядностью 1..3. Низкочастотная часть спектра потока этих отсчетов с высокой точностью повторяет спектр исходного сигнала, а высокочастотная
содержит в основном чистый шум.

В случае преобразования цифрового сигнала к отсчетам более низкой разрядности на той же частоте дискретизации Noise Shaping выполняется вместе с операцией Dithering"а. Поскольку в этом случае повышение частоты дискретизации невозможно, вместо этого спектр добавляемого шума формируется таким образом, чтобы его низко и среднечастотная часть максимально точно повторяла слабую часть сигнала, заключенную в отсекаемых младших разрядах отсчетов. Благодаря этому основная энергия шума вытесняется в верхнюю часть рабочего диапазона частот, а в наиболее слышимой области остаются вполне разборчивые следы слабого сигнала,
который иначе оказался бы полностью уничтоженным. Несмотря на то, что объективные искажения сохраненного таким образом слабого сигнала очень велики, его субъективное восприятие остается вполне приемлемым, позволяя воспринимать на слух компоненты, уровень которых меньше младшего разряда отсчета.
По существу, Dithering и Noise Shaping являются частными случаями одной технологии - с той разницей, что в первом случае используется белый шум с равномерным спектром, а во втором - шум со спектром, специально сформированным под конкретный сигнал. Данная технология приводит к "нестандартному" использованию цифрового формата, основанному на особенностях человеческого слуха.

Ревенко Артем и Исмаилов Дима

В этой проектно-исследовательской работе учащиеся изучили строение уха, природу звука и его основные характеристики, его влияние на неживые предметы и живые существа.

Скачать:

Предварительный просмотр:

Муниципальный конкурс проектно-исследовательских работ

младших школьников «Я – исследователь»

Направление: физическое

Исследовательская работа

Тема: «Почему мы слышим звуки?»

(Исследование звуковых волн)

Ревенко Артём Александрович,

учащиеся 4 класса МБОУ ООШ № 5

г.Шатуры

Руководитель: Столчнева Мария Дмитриевна,

учитель начальных классов

2012 г.

Введение.

1.1.Из истории звука.

1.2.Что такое звук?

1.3.Звук и слух. Строение уха. Почему надо беречь уши? 1.4.Распространение звука.

1.5. Ультразвуки и инфразвуки. Эхолокация в природе.

Глава 2. Моё исследование.

2.1.Образование звука.

2.2.Исследование характеристик звука: высоты, тембра, громкости.

2.3.Звуковые явления. (Опыт. Влияние громкости на неживые предметы; на живые существа).

Заключение.

Список литературы.

Приложение 1.

Приложение 2.

Введение

Пытаются шептать клочки афиш,

Пытается кричать железо крыш,

И в трубах петь пытается вода

И так мычат бессильно провода.

Е. Евтушенко

Мы живем в удивительном мире звуков. Они окружают нас повсюду. Мы слышим шум ветра и шелест листьев, журчание ручья и грохот грома, звук музыкального инструмента, пение соловья и стрекотание кузнечика, скрип двери и шум моторов.

Что такое звук? Как он возникает? Чем один звук отличается от других?

Почему мы слышим звуки? Все эти вопросы заинтересовали меня. И я решил провести исследование.

В связи с этим я поставил перед собой цель: исследовать природу звуковых волн.

Объектом изучения стали звуковые волны, а п редметом моего исследования : их физические свойства.

Гипотеза: колебания звуковых волн влияют на неживые предметы и живые существа.

Задачи:

  1. изучить литературу и подобрать материал о звуке;
  2. определить методы, с помощью которых можно исследовать звуковые волны;
  3. установить, как образуется и распространяется звук;
  4. изучить строение уха;
  5. изучить физические свойства звука: высоту, тембр, громкости;
  6. выяснить, как громкость звука влияет на неживые предметы и живые существа;
  7. подготовить необходимые материалы;
  8. провести опыты и эксперименты, проанализировать полученные результаты и сделать выводы.

Методы :

  1. обзор и анализ литературы;
  1. поведение экспериментов, опытов;
  2. работа со словарем, литературой, интернет-ресурсами;
  3. наблюдение в естественных условиях (сбор показаний), опрос;
  4. анализ различных источников информации, их сравнение с полученными результатами, обобщение.

Свое исследование я проводил в своем классе и дома на протяжении 4 месяцев, с октября. Сначала я подобрал литературу, изучил ее. Затем подобрал доступное мне оборудование для исследования. После я приступил к исследованию.

Глава 1. Удивительный мир звуков

1.1.Из истории звука

В глубокой древности звук казался людям удивительным, таинственным порождением сверхъестественных сил. Они верили, что звуки могут укрощать диких животных, сдвигать скалы и горы, преграждать путь воде, вызывать дождь, творить другие чудеса. В Древнем Египте, заметив удивительное воздействие музыки на человека, ни один праздник не обходился без ритуальных песнопений. Древние индийцы раньше других овладели высокой музыкальной культурой. Они разработали и широко использовали нотную грамоту задолго до того, как она появилась в Европе. Понять и изучить звук люди стремились с незапамятных времен. Греческий ученый и философ Пифагор, доказал, что низкие тона в музыкальных инструментах присуще длинным струнам. При укорочении струны вдвое звук ее повысится на целую октаву. Открытие Пифагора положило начало науки об акустики. Первые звуковые приборы были созданы в театрах Древней Греции и Рима: актеры вставляли в свои маски маленькие рупоры для усиления звука. Известно также применение звуковых приборов в египетских храмах, где были «шепчущие» статуи богов.

1.2.Что такое звук?

С первого класса я уже знал, что «звуки издают предметы и живые существа. Звуки мы можем передать голосом. Он бежит невидимой волной. У нас есть чудесные приборы, которые улавливают эту волну. Эти приборы уши. Внутри наше ухо очень сложное. Оно боится шума, резких, громких звуков. Уши надо беречь.

Иногда звук добегает до какого-нибудь препятствия (например, до горы, леса) и, обратно. Тогда мы слышим эхо» .

Что же такое звук?

Проведу два простых опыта.

Опыт 1 . Приложу ладонь к своей гортани, произнесу какой – либо гласный звук. Гортань начинает дрожать, колебаться. Эти колебания хорошо ощущаются ладонью. Я их не вижу, но слышу.

Опыт 2. Зажму в тисках длинную стальную линейку. Если над тисками будет выступать большая часть линейки, то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то мы обнаружим, что линейка начнет звучать.

Исходя из опытов, я сделал вывод , что звук получается в результате колебаний. Эти волны, распространяясь в воздухе, а также внутри жидкостей и твердых тел, невидимы. Однако при определенных условиях их можно услышать.

Упругие волны, способные вызвать у человека слуховые ощущения, называются звуковыми волнами или просто звуком.

В толковом словаре Ожегова говорится, что « звук – это то, что слышится, воспринимается слухом: физическое явление, вызываемое колебательными движениями частиц воздуха или другой среды».

Рассмотрю примеры, поясняющие физическую сущность звука. Струна музыкального инструмента передает свои колебания окружающим частицам воздуха. Эти колебания будут распространяться все дальше и дальше, а достигнув уха, вызовут колебания барабанной перепонки. Я услышу звук. В каждой среде в результате взаимодействия между частицами колебания передаются все новым и новым частицам, т.е. в среде распространяются звуковые волны.

Наука, изучающая звуковые волны, называется акустикой. Акустика имеет несколько разновидностей. Так физическая акустика занимается изучением самих звуковых колебаний. Электроакустика, или техническая акустика, занимается получением, передачи, приемом и записью звуков при помощи электрических приборов. Архитектурная акустика изучает распространение звука в помещениях. Музыкальная акустика исследует природу музыкальных звуков, а также музыкальные настрой и системы. Гидроакустика (морская акустика) занимается изучением явлений, происходящих в водной среде, связанных с излучением, приемом и распространением акустических волн. Атмосферная акустика изучает звуковые процессы в атмосфере, в частности распространение звуковых волн, условие сверхдальнего распространения звука. Физиологическая акустика исследует возможности органов слуха, их устройство и действие. Она изучает образование звуков органами речи и восприятие звуков органами слуха, а также вопросы анализа и синтеза речи. Биологическая акустика рассматривает вопросы звукового и ультразвукового общения животных.

Обратившись к литературе, я узнал, что, как и любая волна, звук характеризуется амплитудой и спектром частот . Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16-20 Гц до 15-20 кГц. 20 Гц – это, пожалуй, раскаты грома, а 18 000 Гц – тончайший комариный писк.

Звук ниже диапазона слышимости человека называют инфразвуком ; выше: до 1 ГГц, - ультразвуком , от 1 ГГц - гиперзвуком . Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь ) и музыкальные звуки (из которых состоит музыка ).

Вывод: звук – это упругие волны, распространяющиеся в упругой среде. Человек слышит звук в диапазоне от 16-20 Гц до 15-20 кГц. Есть ультразвуки – до 1 ГГц, гиперзвуки от 1 ГГц, инфразвуки – до 16-20 Гц. Акустика изучает звуковые колебания.

1.3.Звук и слух. Строение уха. Почему надо беречь уши?

Передо мной стали вопросы: из чего состоит ухо? Почему в ушах образуется сера? Почему надо беречь уши?

Наблюдая за своими родными и близкими, я понял, что мы все по-разному слышим одни и те же звуки, для кого-то они кажутся тихими, а для других наоборот - громкими. Оказывается, человеческое ухо наиболее чувствительно к звукам с частотой от 1000 до 3000 Гц. Наибольшая острота слуха наблюдается в возрасте 15-20 лет. С возрастом слух ухудшается. У человека до 40 лет наибольшая чувствительность находится в области 3000 Гц, от 40 до 60 лет - 2000 Гц, старше 60 лет - 1000 Гц. Звуки могут отличаться один от другого по тембру. Основной тон звука сопровождается, как правило, второстепенными тонами, которые всегда выше по частоте и предают основному звуку дополнительную окраску. Они называются обертонами. Чем больше обертонов налагается на основной тон, тем «богаче» звук в музыкальном отношении. Органы слуха благодаря своему замечательному устройству легко отличают одно колебание от другого, голос близкого или знакомого человека от голосов других людей. Потому, как говорит человек, мы судим о его настроении, состоянии, переживаниях.

Природа, наделяя живые существа слухом, проявила немалую изобретательность. Органы, воспринимающие звук, расположены у них на участках весьма различных, а подчас и неожиданных: у кузнечика и сверчка, к примеру, на голенях передних ножек, у саранчи - на брюшке, у комаров - на усиках-антеннах. У позвоночных органы слуха в процессе эволюции заняли почетное место по бокам головы, а у млекопитающих появилась и развитая ушная раковина. Низшие животные довольствуются защитными складками кожи, прикрывающими слуховой проход: крокодилу такие складки помогают во время погружения под воду; у птиц - аиста, утки, воробья - аналогичную защитную роль выполняет тонкая пленка. Ушная раковина - чаще ее называют попросту ухом - у многих животных весьма подвижна. Собака прислушивается, «играя ушами» - поднимая, опуская или отводя их в стороны. Лошадь и еж, олень и заяц шевелят ушами, определяя направление звука. У африканского носорога - воронкообразные уши, они могут действовать независимо друг от друга: стараясь распознать шорохи спереди и сзади.

Строение уха (смотри рис.1, приложение 1).

Я узнал, что анатомически ухо делится на три части: наружное, среднее и внутреннее ухо.
Наружное ухо.
Выступающая часть наружного уха называется ушной раковиной, ее основу составляет полужесткая опорная ткань - хрящ. Отверстие наружного слухового прохода расположено в передней части ушной раковины, а сам проход направлен внутрь и слегка вперед. Ушная раковина концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.
Оказывается, что с окружающей среды попадают не только звуки в орган, но и различные инородные тела, микробы. Поэтому в слуховом проходе постоянно выделяется секрет -
ушная сера .
Ушная сера - воскообразный секрет сальных и серных желез наружного слухового прохода. В ее функции входит защита кожи этого прохода от бактериальной инфекции и инородных частиц, например насекомых, которые могут попасть в ухо. У разных людей количество серы различно. Плотный комок ушной серы (серная пробка) может привести к нарушению проведения звука и тугоухости, поэтому уши необходимо чистить регулярно ватным тампоном.
Среднее ухо , это целый комплекс - включающий барабанную полость и слуховую (евстахиеву) трубу, относится к звукопроводящему аппарату. Тонкая плоская мембрана , называемая барабанной перепонкой, отделяет внутренний конец наружного слухового канала от барабанной полости - уплощенного, прямоугольной формы пространства, заполненного воздухом. В этой полости среднего уха находится цепочка из трех подвижно сочлененных миниатюрных косточек (слуховых косточек), которая передает колебания от барабанной перепонки во внутреннее ухо. В соответствии с формой, косточки называются молоточек, наковальня и стремя (смотри рис.2, приложение1).
Молоточек своей рукояткой прикреплен к центру барабанной перепонки при помощи связок, а его головка соединяется с наковальней, которая, в свою очередь, прикреплена к стремени. Основание стремени вставлено в овальное окно - отверстие в костной стенке внутреннего уха. Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек.

Оптимальным условием для колебаний барабанной перепонки является одинаковое давление воздуха с обеих сторон.

Так и происходит благодаря тому, что барабанная полость сообщается с внешней средой через носоглотку и слуховую трубу, которая открывается в нижний передний угол полости. При глотании и зевании воздух проникает в трубу, а оттуда в барабанную полость, что позволяет поддерживать в ней давление, равное атмосферному.
Внутреннее ухо. Костная полость внутреннего уха, содержащая большое число камер и проходов между ними, называется лабиринтом. Он состоит из двух частей:

Костного лабиринта и

Перепончатого лабиринта.
Костный лабиринт - это ряд полостей, расположенных в плотной части височной кости; в нем различают три составляющие: полукружные каналы - один из источников нервных импульсов, отражающих положение тела в пространстве; преддверие; и улитку - орган слуха.

К огда звуковая волна доходит до нашего уха, она улавливается им – «влетает» в ушную раковину, или наружное ухо. Звук доходит до барабанной перепонки. Барабанная перепонка натянута сравнительно туго, и звук заставляет ее колебаться, вибрировать. За барабанной перепонкой находится среднее ухо – небольшая полость, заполненная воздухом. Когда давление в наружном ухе увеличивается, барабанная перепонка прогибается внутрь. Перепады давления в среднем ухе повторяют перепады давления в звуковой волне и передаются дальше, во внутреннее ухо. Внутреннее ухо – это полость, свернутое улиткой и заполненное жидкостью. Ухо имеет два порога слышимости: нижний и верхний. Натренированное ухо может слышать в полной тишине в лесу звук падающей листвы. Если перейти верхний порог громкости звука, то в ушах возникнет сильная боль.

В действии органов слуха большую роль играет резонанс. Основная мембрана, натянутая вдоль улитки - внутреннего уха, состоит из множества эластичных волокон, общее число которых достигает 24 000, у основания улитки они короткие (0,04мм), тонкие и натянутые, а у вершины длинные (до 0, 5) мм, более толстые и менее натянутые. Попавшие в ухо звуковые волны вызывают вынужденные колебания жидкости, заполняющей внутреннее ухо. И вследствие явления резонанса – дрожание волоконец определенной длины. Чем выше звук, тем более короткие волоконца резонируют с ним; чем сильнее звук, тем больше размах колебаний волоконец. Именно этим и объясняется способность человека воспринимать звуки. У человека диапазон воспринимаемых частот лежит в полосе от 16 Гц до 20 кГц. В то время как у кошки диапазон гораздо шире: от 60 Гц до 60 кГц. Довольно широка полоса слышимости у птиц, черепахи, лягушки, кузнечика. Чрезвычайно «тонким слухом» обладают ночные хищники.

К сожалению, не все люди могут слышать.

Нарушение слуха - полное (глухота ) или частичное (тугоухость) снижение способности обнаруживать и понимать звуки . Нарушением слуха может страдать любой организм , способный воспринимать звук . Звуковые волны различаются по частоте и амплитуде . Потеря способности обнаруживать некоторые (или все) частоты или неспособность различать звуки с низкой амплитудой , называется нарушением слуха.

http://ru.wikipedia.org/wiki/

ПРИЛОЖЕНИЕ 1

Рисунок 1.

Рисунок 2.

Рисунок 3.

Рисунок 4.

Приложение 2.

Таблица 1.

Источник шума, помещение

Уровень шума, дБ

Реакция организма на длительное акустическое воздействие

Листва, прибой,

Средний шум в квартире, классе

Успокаивает

Гигиеническая норма

Шум внутри здания на магистрали

Телевизор

Поезд (метро, на

Появляются чувство раздражения, утомляемость, головная боль

музыка

спокойно

слегка двигаются

подпрыгивают

Riana

движения нет

движения нет

двигаются медленно

Kristina Agilera Not muself tonigt

двигаются чуть-чуть

слегка подпрыгивают

активно прыгают

Ladi Gaga Telephon

движения нет

движения нет

Движение появляется только при звучании басов

Реп

Eminem

нет движения

двигаются медленно

двигаются активно

Детская песня

Мама

движения нет

ползают

слегка подпрыгивают

Классика

Рихард Вагнер Дорога в Вальхаллу

ползают

активно подпрыгивают

Вальс Штрауса

ползают

ползают, слегка подпрыгивают

активно ползают и подпрыгивают

Генриха Герца , который внёс важный вклад в развитие электродинамики . Название было учреждено Международной электротехнической комиссией в 1930 году . В 1960 году на генеральной конференции по мерам и весам это название было принято взамен ранее существовавшего термина (число циклов в секунду ).